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Programme des séances

Date Programme
03/02 Retour sur les bases et approfondissements (I)
04/02 Retour sur les bases et approfondissements (II)
10/02 Hétéroscédasticité (I)
17/02 Hétéroscédasticité (II)
18/02 Examen CC + Modèles de probabilité linéaire
03/03 Logit/Probit (I)
10/03 Logit/Probit (II) + Conditionnal logit
Semaine du 17/03 Examen final
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Why econometrics?

⇒ To answer policy relevant questions
Effets of raising the minimum wage on unemployment ?

Effets of introducing a univeral income on productivity ?
Effects of income taxation on labor supply ?
. . .
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Why econometrics?

Econometrics is built on the development of statistical methods aimed at:
Estimating economic relationships

Testing economic theories
Evaluating and implementing government and business policies

→ The primary focus of econometrics is to address challenges related to
the collection and analysis of non-experimental/observational economic
data.
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Why econometrics?

The Economist’s Objective → To determine whether one variable has
a causal effect on another.
Identifying a dependency link between two variables does not imply a
causal relationship (even if it seems likely).

→ Correlation ̸= Causality
Ceteris Paribus (All Else Equal) Analysis → Plays a crucial role in causal
analysis. . . However. . . in reality, for example, the relationship between
minimum wage and unemployment rates illustrates the complexity of
establishing causality.
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Estimation methods

OLS most commonly used statistical method in applied economics;
allows to address a wide range of questions in development
Other methods: ML (non-linear models)
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The Power of Regression Models
Regression models are versatile statistical tools capable of addressing a
wide array of questions. Let’s explore three key applications:

Prediction Utilizing parents’ heights to
forecast the height of their
children.

Through regression, we can
estimate future outcomes
based on known predictors.

Modeling Establishing a simple and
clear mean relationship
between the heights of
parents and their children.

Regression helps in
identifying and quantifying
the strength and form of
relationships between
variables.

Covariation Examining the variation in
children’s heights that seems
independent of parents’
heights (residual variation)

Explore underlying patterns
and associations, revealing
influences beyond the
primary variables of interest
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Outline of this course

1 The classical regression model
2 Properties of the OLS estimator in large samples
3 Heteroscedasticity: the problem and correction methods
4 Non-linear models: probit, logit, tobit, poisson
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The SRM
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The population model

We assume the following linear model to be true at the population
level: y = β0 + β1x + u

We are interested in the effect of a 1 unit change in x on y which is
measured by β1 but β1 is unknown
Let’s infer the value of β1 from a random sample of the population

If inference is good, then we should expect that if we draw another
random sample from the population, we will obtain ‘similar’ results
as to the nature of the population
How ?
Under the zero conditional mean assumption, the inference method
will only exploit information on how x and y vary and co-vary
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The zero conditional mean assumption

The zero conditional mean assumption: E (u/x) = 0. Relies on
Assumption 1: E (u/x) = E (u) %(for any value of x, the expected
value of the unobservable u is the same and therefore must equal the
expected value of u in the population)

Assumption 2: E (u) = 0 %(because the population model includes a
constant)

Then, β1 = Cov(y , x)
V (x) . Proof :
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Let’s re-express β1 using E (u/x) = 0

Cov(y , x) = Cov(β0 + β1x + u, x)

Cov(y , x) = 0 + β1V (x) + Cov(u, x) since Cov(x , x) = V (x)

β1 = Cov(y , x)
V (x) (indeed, since E (u/x) = 0 then Cov(u, x) = 0)

Note that Cov(y , x) and V (x) are unknown but they can be
estimated
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Let’s re-express β1 using E (u/x) = 0

E (y |x) = β0 + β1x (*)

(*) is called the population regression function (PRF)

Linearity
1 unit increase in x changes the expected value of y by the amount
of β1
β0 : expected value of y given x$=$0

(*) is also called the conditional expectation function (CEF)
These are population-level concepts
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Wage and Education: the case of South-Africa
(1993)

Let’s assume Log(wage) = β0 + β1educ + u to be true at the
population level.

Interpret β1 and β0 making clear the assumption(s) made
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Wage and Education: the case of South-Africa
(1993)

Under the zero conditional mean assumption, we have
E (ability |educ = 5) = E (ability |educ = 15) (xx)

Plausible ?
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Wage and Education: the case of South-Africa
(1993)

If (xx) is not verified, what does the following observed relationship
between Log(wage) and educ suggest ?
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The OLS estimator

OLS estimates of β1 and β0 are obtained by

Min Σû2 = Σ[y − (β̂0 + β̂1x)]2

CPO 1: Σ[y − (β̂0 + β̂1x)] = 0
CPO 2: Σx [y − (β̂0 + β̂1x)] = 0 → (demo p63 in Wooldridge (2013)

The sample regression function : ŷ = β̂0 + β̂1x

β̂1 = Σ(x − x)(y − y)
Σ(x − x)2 (**)

(**) is the sample analogue of the population parameter β1

Also: β̂1 = β1 + Σ(x − x)u
Σ(x − x)2

β̂0 = y − β̂1 ∗ x
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Min Σû2 = Σ[y − (β̂0 + β̂1x)]2

CPO 1: Σ[y − (β̂0 + β̂1x)] = 0
CPO 2: Σx [y − (β̂0 + β̂1x)] = 0 → (demo p63 in Wooldridge (2013)

The sample regression function : ŷ = β̂0 + β̂1x
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Application : Wage and Education in South-Africa
(1993)

ŷ = 0.458 + 0.135x

↗ 1 year of education → wage ↗ [(exp(β1) − 1] ∗ 100 % (=14.4%)
More on coefficient interpretation
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Properties of statistics derived from OLS estimation

CPO (1) => Σû = 0

CP0 (2) => Σxû = 0
(x , y) belongs to the OLS equation

(1) & (2) → cov(ŷ , û) = 0

Thus, SCT = SCR + SCE {(cf demo p74 Wooldridge, 2013)}
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(x , y) belongs to the OLS equation

(1) & (2) → cov(ŷ , û) = 0
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Why OLS estimator and why not another one (ex: min the absolute
distance between y and ŷ) ?
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OLS estimator property
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Validity and Precision

Validity
A measure is considered valid if it accurately captures the concept it
intends to measure, meaning it exhibits low systematic error. Validity is
assessed by comparing various measures of the same concept to ensure
they align closely with the theoretical construct they are supposed to
represent.

Precision
Precision refers to the consistency of a measure in replicating the same
value across repeated observations of a phenomenon, indicating low
random error. To assess precision, one can repeatedly measure a
phenomenon and compare the outcomes to check for consistency
(test-retest method).
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Assumption for unbiasedness

Unbiasedness

Definition: an estimator is unbaised if its average value over a large
number of repeated trials equals the population value (E (β̂0) = β0 and
E (β̂1) = β1)

β̂k is unbaised if

(A1) The model is linear in its parameters
(A2) We have a random sample from the population of interest
(A3) There is sample variation in the explanatory variables
(A4) The zero conditional mean assumption is verified

{(demo p. 88 Wooldridge (2013))
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Unbiased on average, but what about its dispersion around the true
value ?

Ceteris paribus, we clearly prefer an estimator with minimum
variance
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Assumption for minimum variance
Minimum variance

β̂k is with minimum variance if

(A5) Var(u/x) = σ2 is verified (homoscedasticity)

If (A1) to (A5) are verified, then β̂k is BLUE ({not demonstrated})
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Variance expression

V (β̂1) = σ2

SCTx
{(cf demo)} → This formula highlights two critical

components influencing the estimator’s precision:

Error Variance : Reflects the variability in the observed values around
the regression line. A higher error variance means more uncertainty
in our estimation (σ2).
Total variation in x: Denotes the sum of squared deviations of x
values from their mean. Greater variation in x provides a stronger
base for estimating the slope, reducing the variance of β̂1.

The problem is that we do not know σ2. . .
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What is the difference between errors and residuals?
Population Model: yi = β0 + β1xi + ui → ui represents the error for
observation i .
Expressing yi in terms of its fitted value and residual: yi = β̂0 + β̂1xi + ûi
→ Residuals are part of the estimated equation.
Key Differences:

Errors (ui) can never be directly observed since they represent the
deviation of observed values from the true population parameters.
Residuals (ûi) are calculated from the data and represent the
difference between observed values and those predicted by the model.

Residuals in Relation to Errors:
ûi = yi − β̂0 − β̂1xi

ûi = (β0 + β1xi + ui) − β̂0 − β̂1xi

ûi = ui − (β̂0 − β0) − (β̂1 − β1)xi

ûi ̸= ui , but the expected difference between these two terms is zero.Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics I



Introduction The SRM OLS estimator property Extending the SRM Interaction term

Variance expression

σ2 = E (u2) . An unbiased estimate is Σû2

n − 2 = SCR
n − 2 %({p97 in

Wooldridge (2013)})

SCR
n is biased because it omits the two conditions residuals should

verify in an OLS model (if we know the value of n − 2 residuals, the
two last are constrained by the conditions)
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Variance expression

Where do we read V (β̂1) (and V (β̂0)) in the regression results ?
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Assumption violation

What if (A5) is violated ? Then OLS estimator has not minimum
variance

More on heteroscedasticity later (what can we say based on the
graph? )

What if (A2) is violated ? Then OLS estimator is biased and its
causal interpretation is challenged

Random sampling (→ errors are uncorrelated)
Stratified random sampling (→ less sure that errors are uncorrelated
. . . )

What if (A4) is violated ? Then OLS estimator is biased and its
causal interpretation is challenged

On the benefit of adding controls correlated with the x of interest
On the benefit of conducting experiments (whenever possible)%
[more on this next year!]
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Wage and Education: the case of South-Africa
(1993)

Intuition regarding the risk of heteroscedasticity
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Extending the SRM
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A dummy as explanatory variable

E (Log(wage)/prim = 1) = β0 + β1 = ?

E (Log(wage)/prim = 0) = β0 = ?
Completing primary education → wage increases by
[(exp(β1) − 1] ∗ 100 % (=158 %)
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Wage and primary education in South Africa (1993)
(2)
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Multiple Linear Regression (MLR)
Multiple Linear Regression (MLR) is an extension of simple linear
regression that allows for the prediction of a dependent variable based on
the values of two or more independent variables. By incorporating
multiple predictors, MLR facilitates a more nuanced analysis, enabling
researchers and analysts to understand the complex relationships between
variables.

Ceteris Paribus Reasoning: MLR is well-suited for ‘ceteris paribus’
analysis, allowing for the explicit consideration of many factors that
simultaneously affect the dependent variable.
Incorporating Multiple Predictors: MLR allows for the inclusion of
numerous explanatory variables, providing a framework to add useful
factors for explaining variations in the dependent variable.
Enhanced Predictive Power: By accounting for multiple influencing
factors, MLR can lead to improved predictions of the dependent
variable, offering deeper insights into how different variables interact.
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Advantages of Multiple Linear Regression

Comprehensive Analysis: MLR enables a more comprehensive
examination of the data by considering multiple factors at once,
which is more reflective of real-world complexities.
Improved Prediction Accuracy: The inclusion of multiple relevant
variables can improve the model’s accuracy in predicting the
outcome.
Diverse Functional Forms: MLR accommodates various functional
forms, allowing for the modeling of complex relationships among
variables.
Control for Confounding Variables: By including multiple predictors,
MLR helps to control for the potential confounding effects of
variables, leading to more reliable and valid conclusions.
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Multiple regression model: The OLS estimator

Let’s assume the population model is :
y = β0 + β1x1 + β2x2 + β3x3 + (...) + u

How compute β̂j ?

β̂j is obtained by minimizing Σu2 which amounts to solving the
following set of equations

Σ[y − (β̂0 + β̂1x1 + ... + β̂kxk)] = 0
Σx1[y − (β̂0 + β̂1x1 + ... + β̂kxk)] = 0
Σx2[y − (β̂0 + β̂1x1 + ... + β̂kxk)] = 0
(. . . )
Σxk [y − (β̂0 + β̂1x1 + ... + β̂kxk)] = 0

→ better handled using the matrix form {see application };
computers solve the problem
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Introduction The SRM OLS estimator property Extending the SRM Interaction term

Expression of coefficient estimate

β̂ = (X ′X )−1X ′Y
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Introduction The SRM OLS estimator property Extending the SRM Interaction term

Property of OLS estimator

β̂j estimated by OLS is unbaised if

(A1)’ The model is linear in its parameters
(A2)’ We have a random sample from the population of interest
(A3)’ There is sample variation in all explanatory variables and no
explanatory variable is collinear with other explanatory variables (no
variable is derived from the combination of other variables)
(A4)’ The zero conditional mean assumption is verified :
E [u/x1, x2, ..., xk] = 0
{(not demonstrated)}

β̂j estimated by OLS is BLUE if, in addition,

(A5)’ V [u/x1, x2, ..., xk] = σ2 {(not demonstrated)}

These hypothesis are called hypothesis of Gauss Markov
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Introduction The SRM OLS estimator property Extending the SRM Interaction term

Expression of coefficient variance

Under Gauss-Markov hypothesis,

V (β̂j) = σ2

SCTxj(1 − R2
xj)

{(not demonstrated)}

with σ2 estimated by SCR
n − (1 + k)

with R2
xj the R2 of a model where xj is regressed on all other x (and

measure how strongly the other explanatory variables in the model
correlate with xj)

{(see application)}

NB: the matrix form of V (β̂) = σ2(X ′X )−1
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Introduction The SRM OLS estimator property Extending the SRM Interaction term

Issue if collinearity

Application: let’s compare the two formula of V (β̂1)

Coefficient on x1 if SRM: V (β̂1) = σ2

SCTx

Coefficient on x1 if MRM: V (β̂1) = σ2

SCTx1(1 − R2
x1)

V (β̂1) is higher if collinearity between the x
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Introduction The SRM OLS estimator property Extending the SRM Interaction term

Issue if omitted variables (1)

(particular case with 2 independant variables)
Log(wage) = β0 + β1Educ + β2InAbility + u

Assume that the zero mean assumption is verified here

What if we estimate instead

Log(wage) = β′
0 + β′

1Educ + u′ ?

Unless β2 = 0 or Cov(InAbility , Educ)=0, then β1 is biased
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Introduction The SRM OLS estimator property Extending the SRM Interaction term

Issue if omitted variables (2)

Let’s write : InAbility = δ0 + δ1Educ + e

with δ1 = Cov(Educ, InAbility)
V (Educ)

Let’s replace Inability in the first model, the wage equation can be
re-written
Log(wage) = (β0 + β2 ∗ δ0) + (β1 + β2 ∗ δ1)Educ + (u + β2 ∗ e)

with E [(u + β2 ∗ e)/educ)] = 0

β1 + β2 ∗ δ1 ̸= β1 unless β2 = 0 or Cov(Educ, InAbility)=0
Omitting InAbility will lead to a biased estimate of the effect of
Educ on Logwage unless β2 = 0 or Cov(Educ, InAbility) =0
The sign of the bias depends on the sign of β2 ∗ δ1
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β1 + β2 ∗ δ1 ̸= β1 unless β2 = 0 or Cov(Educ, InAbility)=0

Omitting InAbility will lead to a biased estimate of the effect of
Educ on Logwage unless β2 = 0 or Cov(Educ, InAbility) =0
The sign of the bias depends on the sign of β2 ∗ δ1
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Coefficient interpretation

β1: effect of x1 on y, ceteris paribus or effect of x1 on y, net of the
influence of xk

Proof : Frisch-Vaugh theorem (case with two independant variables)
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Application : accounting for returns to work
experience

Let’s estimate: Log(wage) = β′′
0 + β′′

1 Educ + β′′
2 WorkExp + u′′

Interpret β′′
1

How β′′
1 is expected to vary compared to β′

1 ?
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Application : accounting for returns to work
experience (2)

Table 3: Model comparison

(1) (2) (3) (4)

Years of education 0.14*** 0.16*** 0.16*** -0.03***
(0.00) (0.00) (0.00) (0.01)

Potential experience 0.02*** 0.04*** 0.06***
(0.00) (0.00) (0.00)

Potential experience squarred -0.00*** -0.00***
(0.00) (0.00)

Years of education squarred 0.01***
(0.00)

Constant 0.46*** -0.15*** -0.41*** -0.14***
(0.02) (0.04) (0.05) (0.05)

N 6,968 6,968 6,968 6,968
R 0.28 0.31 0.31 0.36

Note: Significance levels are denoted as follows: * p<0.10, ** p<0.05, *** p<0.01.Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics I
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Application : accounting for returns to work
experience (3)

Account for non-linearities in the effect of education and of work
experience
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Application : accounting for returns to work
experience (4)

Table 4: Model comparison

(1) (2) (3) (4)

Years of education 0.14*** 0.16*** 0.16*** -0.03***
(0.00) (0.00) (0.00) (0.01)

Potential experience 0.02*** 0.04*** 0.06***
(0.00) (0.00) (0.00)

Potential experience squarred -0.00*** -0.00***
(0.00) (0.00)

Years of education squarred 0.01***
(0.00)

Constant 0.46*** -0.15*** -0.41*** -0.14***
(0.02) (0.04) (0.05) (0.05)

N 6,968 6,968 6,968 6,968
R 0.28 0.31 0.31 0.36

Note: Significance levels are denoted as follows: * p<0.10, ** p<0.05, *** p<0.01.Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics I
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Relationship between Log(wage) and experience (for average value of
education)
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Interaction term
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Understanding Variable Interactions in Multiple
Linear Regression

Until now, we’ve assumed that the effect of each independent variable
remains constant, regardless of the values taken by other independent
variables in the model. However, it’s possible for the effect of a variable,
say x1 or x2, to vary depending on the values of another variable in the
model.

For instance, the effect of x1 might change based on the value of x2.
This scenario is referred to as an interaction between x1 and x2.
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Interaction term - Key Points

Variable Interaction: Occurs when the effect of one independent
variable on the dependent variable changes depending on the level of
another independent variable.
Modeling Interactions: It’s crucial to include interaction terms in
the regression model when hypothesizing that such dynamics exist
between variables, to accurately capture the complexity of their
relationships.
Implication for Analysis: Recognizing and modeling interactions
allow for a more nuanced understanding of how variables collectively
influence the dependent variable, providing insights that would be
missed by assuming constant effects.

Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics I



Introduction The SRM OLS estimator property Extending the SRM Interaction term

Interaction between two quantitative variables
##
## Regression Results
## ===================================================================
## Dependent variable:
## -----------------------------------------------
## lwage
## (1) (2)
## -------------------------------------------------------------------
## interexpereduc 0.003**
## (0.002)
##
## educ 0.078*** 0.044**
## (0.007) (0.017)
##
## exper 0.020*** -0.021
## (0.003) (0.020)
##
## Constant 5.503*** 5.949***
## (0.112) (0.241)
##
## -------------------------------------------------------------------
## Observations 935 935
## R2 0.131 0.135
## Adjusted R2 0.129 0.132
## Residual Std. Error 0.393 (df = 932) 0.392 (df = 931)
## F Statistic 70.162*** (df = 2; 932) 48.407*** (df = 3; 931)
## ===================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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Interaction between a quantitative variable and a
categorical variable

##
## Regression Results
## ==================================================================
## Dependent variable:
## ----------------------------------------------
## lwage
## (1) (2)
## ------------------------------------------------------------------
## intereducsupexper -0.022*
## (0.012)
##
## exper 0.006* 0.026**
## (0.003) (0.011)
##
## educ_sup 0.238*** 0.558***
## (0.048) (0.181)
##
## Constant 6.493*** 6.193***
## (0.066) (0.177)
##
## ------------------------------------------------------------------
## Observations 935 935
## R2 0.026 0.029
## Adjusted R2 0.024 0.026
## Residual Std. Error 0.416 (df = 932) 0.416 (df = 931)
## F Statistic 12.379*** (df = 2; 932) 9.392*** (df = 3; 931)
## ==================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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Interaction between 2 categorical variables
##
## Regression Results
## ===================================================================
## Dependent variable:
## -----------------------------------------------
## lwage
## (1) (2)
## -------------------------------------------------------------------
## intersouthblack -0.141*
## (0.083)
##
## black -0.248*** -0.165***
## (0.041) (0.063)
##
## south -0.132*** -0.112***
## (0.029) (0.031)
##
## Constant 6.856*** 6.850***
## (0.017) (0.017)
##
## -------------------------------------------------------------------
## Observations 935 935
## R2 0.075 0.077
## Adjusted R2 0.073 0.075
## Residual Std. Error 0.406 (df = 932) 0.405 (df = 931)
## F Statistic 37.565*** (df = 2; 932) 26.064*** (df = 3; 931)
## ===================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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