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Measures of Central Tendency and
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Measures of Central Tendency

Central tendency measures give different types of mean values for a
variable rightarrow Gives some measures that summarize a variable.

Mode: The most frequent value.

Median: The central value that divides observations into two equal
parts.
Mean:

x̄ = 1
n ×

n∑
i=1

xi

Note: The mean is highly sensitive to outliers, whereas the median is
much less so.
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Measures of Dispersion
→ Dispersion is understood as the spread, stretch, or variability of values.

Range: The difference between the largest and smallest values.

Interquartile Range: The difference between the third and first
quartiles.
Variance: Measures how close the variable’s values are to the mean
(close or not) squared deviation from the mean

V (x) = 1
n − 1 ×

n∑
i=1

(xi − x̄)2

Standard Deviation: Deviation from the mean

σ =

√√√√ 1
n − 1 ×

n∑
i=1

(xi − x̄)2
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Up to Now. . .

We have developed several estimators based on the Gauss-Markov
assumptions. . .

Yet, having only information on the first two moments of the
estimators β̂j , mean and variance. . .

Proves insufficient for conducting statistical inference.
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Sampling, Distributions, and the Normal
distribution
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Sampling and Statistical Inference

We never observe the entire population → but samples

To what extent do these samples represent the population (e.g., the
population mean)? What is the confidence interval around the sample
mean where we can expect the population mean to lie?

The idea of statistical inference is to generalize results from samples
to the entire population.
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The Central Limit Theorem (CLT)

To draw conclusions about the entire population from samples, we
rely on the central limit theorem.

If we take a set of samples from any distribution, the distribution of
the sample means will be normal, and its mean will be the same as
the mean of the original distribution.

Regardless of the probability law of a random event, if it is repeated
infinitely often, independently, its average will eventually behave like
a normal law.

This theorem allows us to say that the normal law is the law of
natural phenomena.

Example: Observing the height of individuals in a population will follow a
distribution resembling that of the normal law (the famous bell curve).
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Bell Curve or Gaussian Distribution

Figure 1: Normal law / Bell curve

Graphically represents the distribution of a series, especially the
density of a series’ measurements
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In Summary

The larger the sample size, the smaller the standard deviation of the
sample.

The sample mean is different from the population mean, BUT by
using the sample mean and sample standard deviation, we can use
the CLT to construct a confidence interval where we can expect the
population mean to lie.

We can measure our uncertainty.
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Application in R (I)

result <- sample(0:20, 1) #mean =10
# The uniform law models random draws

vector_mean <- c()
for (sample in 1:10000){

vector_tirage <- c()
for (tirage in 1:20){

vector_tirage <- c(vector_tirage,sample(0:20, 1))
}
vector_mean <- c(vector_mean, mean(vector_tirage))

}
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Application on R (II)
hist(vector_mean, breaks=100)

Histogram of vector_mean
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summary(vector_mean)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.850 9.050 10.000 9.979 10.900 15.050
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Distributions and the Normal Distribution
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Distribution of a Continuous Variable

Continuous variables: the probability distribution gives the
probability that a value falls within a certain interval.

Knowing the distribution of X allows us to determine the probability that
x is within a certain interval.

1 Probability density function (PDF): cannot give us a probability
for a specific value of X (Pr(X = x) = 0). It can only tell us the
probability that x is within a certain interval:
Pr(X ∈ [a, b]) =

∫ b
a f (x)dx

2 Cumulative distribution function (CDF): gives the probability
that X takes on a value less than or equal to x:
CDF (x) = Pr(X ≤ x) =

∫ x
−∞ f (x)dx
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Normal Distribution

1
σ

√
2π

e− (x−µ)2

2σ2

Probability density function of the normal distribution → Defined by two
parameters: mean and variance. When X is normally distributed, X
follows N (µ, σ2)

1 Continuous;
2 Unbounded;
3 Symmetrical around the mean;
4 Mean = mode = median;
5 Inflection points at µ ± σ2.
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Normal Curve

Figure 2: Depending on the two parameters that have been defined the shape
of the curve will be different.
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Transforming a Normal Curve
If our distribution does not follow a standard normal distribution
(N (0, 1)), we can transform it

Transform any normal distribution into a standard normal
distribution
Z Score: Z = X−µ

σ → the number of standard deviations from the
mean of a data value (a proportion of the number of standard
deviations below or above the population that a raw score
represents).
Z-score → an approach to comparing test results with those of an
“ordinary” population, in other words, it’s a means we use to know
the probability of obtaining x.
Z-score/z-test: leads to the standard normal distribution whose
probabilities are known.
Z-test: a type of hypothesis test → where the test statistic is
normally distributed, i.e., where the test statistic follows a Z
distribution.
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When Working with Samples
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When Working with Samples

Challenges with Samples
We do not know the population, only the sample.
We cannot use z-scores and the z-table due to the requirement for a
large number of observations.

Solutions
We use the sample standard deviation to determine the standard
error: errorstandard = s√

N .
We replace z-scores with t-scores and t-tables, which account for
sample sizes.

Difference Between t-Distribution and z-Distribution : T-distribution has
fatter tails to account for the increased uncertainty in smaller samples.
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Student’s t-Distribution Density Curve

Figure 3: Plot of the probability density of the Student’s law, with k the
number of degrees of freedom
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Student’s t-Distribution vs. Normal Distribution

The more degrees of freedom, the closer the T-distribution
resembles the Z-distribution.
Degrees of freedom relate to the amount of independent information
in the data, with t-distribution approaching normal distribution as
sample size increases.
With samples larger than 1000 (N>1000), t-tests produce similar
results to z-tests.
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Summary

z-test: Used when the population variance is known or unknown but
the sample size is large.
t-test: Used when the population variance is unknown and the
sample size is small.
In practice, especially in packages and in R, T-tests are
predominantly used.
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Distribution of the OLS estimator and
hypothesis testing
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Distribution of the OLS estimator - The classical
linear regression model

For statistical inference, this is not enough to have info on the two
first moments of moments of β̂k . We need to know its full
distribution.

If (A1)’ to (A5)’ are verified
If, in addition, u ⇝ N(0, σ) [(A6)’]
Then, β̂k ⇝ N(βk , V (β̂k))

with V (β̂k) = σ2

SCTxk(1 − R2
xk)

(this derives from the fact that the β̂k are linear function of u and
from assuming (A6)’) (cf demo p 188 Wooldridge (2013))
NB: if (A6)’ is true, (A4)’ and (A5)’ are
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linear regression model

For statistical inference, this is not enough to have info on the two
first moments of moments of β̂k . We need to know its full
distribution.
If (A1)’ to (A5)’ are verified
If, in addition, u ⇝ N(0, σ) [(A6)’]
Then, β̂k ⇝ N(βk , V (β̂k))

with V (β̂k) = σ2

SCTxk(1 − R2
xk)

(this derives from the fact that the β̂k are linear function of u and
from assuming (A6)’) (cf demo p 188 Wooldridge (2013))
NB: if (A6)’ is true, (A4)’ and (A5)’ are
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Distribution of the OLS estimator - The classical
linear regression model

(particular case with 1 independant variable)
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Distribution of the OLS estimator - The classical
linear regression model

Why (A6)’ ?

u being the sum of many factors unobserved affecting separately and
in an additive manner y , we can use the CLT to conclude that u
follows approx. a normal distribution

Why not (A6)’ ?

What if u is a complex combination of these unobserved factors ?

⇒ Whether u follows a normal distribution or not is an empirical
question (may explain why it is better to work with the log of wage,
instead of wage)
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Hypothesis Testing
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Hypothesis

Science requires falsifying or confirming theoretical postulates.

A statistical hypothesis is a statement about the characteristics
(parameter values, distribution shape) of a population.

We posit two hypotheses:

H0: The null hypothesis → Statistically, we attempt to reject it. If
rejected, our analysis supports the test hypothesis.
H1: The alternative hypothesis

→ The null hypothesis is subject to testing, with the entire testing
process conducted under the assumption it is true.
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Significance Level

The pre-agreed risk, denoted as α, of wrongly rejecting the null
hypothesis H0 when it is true, is called the test’s significance level and is
expressed as a probability:

α = P(rejeterH0|H0vraie)

.

A rejection region for the null hypothesis (also called critical region)
corresponds to the probability α.

On the sampling distribution, a complementary region will also
correspond to the validation (or acceptance) region of H0 (probability of
1 − α).
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Type 1 error or false positive
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Application: Making Mistakes in the Justice System

http://www.intuitor.com/statistics/T1T2Errors.html
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Type I and Type II Errors

Type I Error: α, the risk of incorrectly rejecting H0, i.e., the risk of
rejecting H0 when H0 is true. Probability of committing a Type I
error: α = P(rejeterH0|H0estvraie).
Type II Error: Failing to reject the null hypothesis H0 when the
alternative hypothesis H1 is true. Probability of committing a Type
II error: β = P(nepasrejeterH0|H1estvraie).

→ The complementary probability of a Type II error risk (1 − β) defines
the test’s power relative to the parameter value in the alternative
hypothesis H1. The test’s power represents the probability of rejecting
the null hypothesis H0 when the true hypothesis is H1.
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Steps for Hypothesis Testing

1 State a null hypothesis and an alternative hypothesis:
H0 : µ = µ0.
H1 : µ ̸= µ0.

2 Choose a relevant significance level: α = .05.
3 Determine the sampling distribution of the test statistic (standard

normal distribution and its Z statistic, Student’s t-distribution, and
the T statistic).

4 Calculate the test statistic.
5 Find the critical value in the appropriate statistical table.
6 Conclude on the null hypothesis.
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Two-tailed and One-tailed Tests

Two-tailed test: When checking if the observed value is
significantly different from a test value, examining both ends (or
tails) of our statistic of interest’s distribution.
One-tailed test: Theoretical expectations about the direction of
the test value, testing if a statistic is significantly different from this
test value, expecting this test value to be on a particular side of the
distribution.
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Hypothesis testing regarding βk - The t distribution
Under the hypothesis of the classical linear regression model,
β̂k − βk√

V (β̂k)
⇝ N(0, 1)

with βk the value of the null

with V (β̂k) = σ2

SCTxk(1 − R2
xk)

(demo p 188 Wooldridge (2013))
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Hypothesis testing regarding βk - The t distribution
Pb: we do not know σ

We can estimate σ, then we can get
√̂

V (β̂k) named ‘standard
error’ of β̂k

But then β̂k − βk

se(β̂k)
⇝ T with (n-k-1) ddl (with n large, similar to the

standard normal distribution)
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The t-test

H0 : βk= 0 ; H1 : βk ̸= 0

If H0 is true : tβk ≡ β̂k

se(β̂k)
⇝ T with (n-k-1) ddl

If H0 is true : 95% of the values of tβk are included in the interval
[−1.96; +1.96] (if n large) OR if H0 is true, very low chance the
values of tβk are outside this interval.
⇒ We reject H0 if |tβk | > 1.96 (if n large) with a risk of an error of
5% (or if β̂k is 2 standard deviation further zero)

!!! Reject H0 while H0 is true is named Type 1 error (with 5%, we
mininize this error)
!!! Not rejecting H0 while H0 is false is named Type 2 error

Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics II



Measures of Central Tendency and Dispersion Sampling, Distributions, and the Normal distribution Distributions and the Normal Distribution When Working with Samples Distribution of the OLS estimator and hypothesis testing Hypothesis Testing

The t-test

H0 : βk= 0 ; H1 : βk ̸= 0

If H0 is true : tβk ≡ β̂k

se(β̂k)
⇝ T with (n-k-1) ddl

If H0 is true : 95% of the values of tβk are included in the interval
[−1.96; +1.96] (if n large) OR if H0 is true, very low chance the
values of tβk are outside this interval.
⇒ We reject H0 if |tβk | > 1.96 (if n large) with a risk of an error of
5% (or if β̂k is 2 standard deviation further zero)

!!! Reject H0 while H0 is true is named Type 1 error (with 5%, we
mininize this error)
!!! Not rejecting H0 while H0 is false is named Type 2 error

Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics II



Measures of Central Tendency and Dispersion Sampling, Distributions, and the Normal distribution Distributions and the Normal Distribution When Working with Samples Distribution of the OLS estimator and hypothesis testing Hypothesis Testing

The t-test

H0 : βk= 0 ; H1 : βk ̸= 0

If H0 is true : tβk ≡ β̂k

se(β̂k)
⇝ T with (n-k-1) ddl

If H0 is true : 95% of the values of tβk are included in the interval
[−1.96; +1.96] (if n large) OR if H0 is true, very low chance the
values of tβk are outside this interval.

⇒ We reject H0 if |tβk | > 1.96 (if n large) with a risk of an error of
5% (or if β̂k is 2 standard deviation further zero)

!!! Reject H0 while H0 is true is named Type 1 error (with 5%, we
mininize this error)
!!! Not rejecting H0 while H0 is false is named Type 2 error

Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics II



Measures of Central Tendency and Dispersion Sampling, Distributions, and the Normal distribution Distributions and the Normal Distribution When Working with Samples Distribution of the OLS estimator and hypothesis testing Hypothesis Testing

The t-test

H0 : βk= 0 ; H1 : βk ̸= 0

If H0 is true : tβk ≡ β̂k

se(β̂k)
⇝ T with (n-k-1) ddl

If H0 is true : 95% of the values of tβk are included in the interval
[−1.96; +1.96] (if n large) OR if H0 is true, very low chance the
values of tβk are outside this interval.
⇒ We reject H0 if |tβk | > 1.96 (if n large) with a risk of an error of
5% (or if β̂k is 2 standard deviation further zero)

!!! Reject H0 while H0 is true is named Type 1 error (with 5%, we
mininize this error)
!!! Not rejecting H0 while H0 is false is named Type 2 error

Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics II



Measures of Central Tendency and Dispersion Sampling, Distributions, and the Normal distribution Distributions and the Normal Distribution When Working with Samples Distribution of the OLS estimator and hypothesis testing Hypothesis Testing

The t-test

H0 : βk= 0 ; H1 : βk ̸= 0

If H0 is true : tβk ≡ β̂k

se(β̂k)
⇝ T with (n-k-1) ddl

If H0 is true : 95% of the values of tβk are included in the interval
[−1.96; +1.96] (if n large) OR if H0 is true, very low chance the
values of tβk are outside this interval.
⇒ We reject H0 if |tβk | > 1.96 (if n large) with a risk of an error of
5% (or if β̂k is 2 standard deviation further zero)

!!! Reject H0 while H0 is true is named Type 1 error (with 5%, we
mininize this error)

!!! Not rejecting H0 while H0 is false is named Type 2 error

Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics II



Measures of Central Tendency and Dispersion Sampling, Distributions, and the Normal distribution Distributions and the Normal Distribution When Working with Samples Distribution of the OLS estimator and hypothesis testing Hypothesis Testing

The t-test

H0 : βk= 0 ; H1 : βk ̸= 0

If H0 is true : tβk ≡ β̂k

se(β̂k)
⇝ T with (n-k-1) ddl

If H0 is true : 95% of the values of tβk are included in the interval
[−1.96; +1.96] (if n large) OR if H0 is true, very low chance the
values of tβk are outside this interval.
⇒ We reject H0 if |tβk | > 1.96 (if n large) with a risk of an error of
5% (or if β̂k is 2 standard deviation further zero)

!!! Reject H0 while H0 is true is named Type 1 error (with 5%, we
mininize this error)
!!! Not rejecting H0 while H0 is false is named Type 2 error

Jean-Baptiste Guiffard (Telecom-Paris, CREST)
Econometrics - Review of Basics II



Measures of Central Tendency and Dispersion Sampling, Distributions, and the Normal distribution Distributions and the Normal Distribution When Working with Samples Distribution of the OLS estimator and hypothesis testing Hypothesis Testing

The t-test

By testing H0 : βk= 0 , we test the significance of βk

How test H0 : βk= a (with a ̸= 0) ; H1: βk ̸= a ?
How test H0 : βk= 0 ; H1 : βk > 0 ?
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p-value

Intuition

Under H0, what is the probability to observe tβk ?

If the probability is very small (close to zero), then very unlikely that
H0 is true
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Confidence Interval for βk

The interval [β̂k − 1.96 ∗ se(β̂k); β̂k + 1.96 ∗ se(β̂k)] (if n is large)
indicates that if we could draw a random sample of our population many
times, and if each time we compute the value of this interval, then 95%
of these intervals would contain the unknow population value βk .
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Hypothesis testing regarding a simple linear
combination of βk
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Hypothesis testing regarding a simple linear
combination of βk

H0 : β1 − β2 = 0 against H1: β1 − β2 ̸= 0

t ≡ β̂1 − β̂2

ŝe(β̂1 − β̂2)
⇝ T with (n-k-1) ddl

As before, if |t| > 2 (if n large), then we reject H0 with an error risk
of 5%

Value of ŝe(β̂1 − β̂2) ?
= [(ŝeβ̂1)2 + (ŝeβ̂2)2 − 2s12]1/2 with s12 an estimator of Cov(β1, β2)

→ directly computed
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⇝ T with (n-k-1) ddl

As before, if |t| > 2 (if n large), then we reject H0 with an error risk
of 5%

Value of ŝe(β̂1 − β̂2) ?
= [(ŝeβ̂1)2 + (ŝeβ̂2)2 − 2s12]1/2 with s12 an estimator of Cov(β1, β2)

→ directly computed
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ŝe(β̂1 − β̂2)
⇝ T with (n-k-1) ddl

As before, if |t| > 2 (if n large), then we reject H0 with an error risk
of 5%
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Testing joint hypothesis - Intuition

log(wage) = β0 + β1jc + β2univ + β3exper + u

H0: β1 =0 and β2 = 0 against H1 : H0 is not true
To test H0, we will exploit information on the SSR or on the R2;
more specifically, we will need to ascertain whether their increase
with controlling for jc and for univ is sufficiently high to justify the
inclusion of both jc and univ
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Testing joint hypothesis - Example
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The F test

F ≡ (SSRc − SSRuc)/q
SSRuc/(n − k − 1)

with q the # of restrictions
k the # of parameters in the unrestricted model
Since OLS minimizes SSR, SSRc − SSRuc > 0 and F >0

F ≡ (R2
uc − R2

c )/q
(1 − R2

uc)/(n − k − 1) (except when we want to test βk = 0
and βl = constant against the alternative – see p. 227 and 230 in
Wooldridge (2013))

→ with the two models estimated, F is easy to compute
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The F test

Decision rule ?

If H0 is true, then F ⇝ F with (q,n-k-1) ddl
If F > critical value for an error risk of 5%, then we reject H0 with
an error risk of 5% (critical value read in the Fisher Table)
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The F test and the t test

We can use the F test to test the significance of one parameter.

The conclusion will be similar
Yet, one prefer the use of the t test because the alternative
hypothesis can be defined in a more flexible way
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Test of the global significance of the model

What if we test H0: all parameters (except the constant) = 0
(against H1: H0 is not true) ?

Then F ≡ R2/k
(1 − R2)/(n − k − 1)

If F > c (critical value for an error risk of 5% read in the Fisher
Table), then we reject H0 with an error risk of 5%
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Coefficient of determination - R2 and adjusted R2

ρ2= 1- σ2
u

σ2
y

(population level)

R2 = 1 − SSR
SST (sample level)

It can be low; as long as the zero conditional mean hypothesis, this
does not challenge the interpretation of βj
Yet a low R2 means a high SSR. Therefore, the βj might not be
precisely estimated. The issue is not important if n is large (see slide
30)
Importance of relative change in R2 for joint hypothesis testing
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R2 and adjusted R2

We can re-writte: R2 = 1 − SSR/n
SST/n

Thus in R2, we estimate σ2
u with SSR/n which is biased

Let’s define : R2 = 1 − SSR/(n − k − 1)
SST/(n − 1)

This is the R2 adjusted
Why of interest ?

It is NOT a better estimator of ρ2
While R2 never decreases when adding a control, R2 can (it will
increase if and only if the t stat associated with the new control is
above 1)
Useful to choose between two not-nested models
Useful to choose between two models with different functional forms
(log in a case – 1 variable, and quadratic in another – 2 variables)
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Complements

Using Log: Pro/Cons (p 288 Wooldridge (2013))

More on joint hypothesis testing and on issues raised by
multicollinearity (cf related chapter in Kennedy)
Coefficient interpretation (and computation of beta coefficient) =>
TD
Interaction terms => TD
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